反比例函数图像跟坐标轴无限接近的是怎么回事?
初中教育 来源:网络 编辑:楠哥 2019-10-09 10:29:03

  在反比例函数中,我们能看得到,确实随着x的不断增大,函数的值会越来越靠近0,于是反比例函数的图像的曲线便随着自变量x的增大不断靠近x轴,跟坐标轴很接近。那是不是会与坐标轴相交产生交点呢,或者是有了交点之后慢慢远离。造成反比例函数图像跟坐标轴无限接近的远离到底怎样?

  当一根绳子正沿着另一曲线(假设曲线是圆)绕上或脱下时,它描出一条渐伸线。

反比例函数图像跟坐标轴无限接近的是怎么回事?

  渐伸线的形状就像上图中点 B 的运动轨迹 。

  当曲线 C 上动点 P 沿着曲线 C 无限远移时,若动点 P 到某直线 L 的距离无限趋近于 0 ,则称直线 L 是曲线 C 的渐近线 。

反比例函数图像跟坐标轴无限接近的是怎么回事?

  曲线的渐近线有两种类型:

  1、垂直渐近线;

  2、斜渐近线(包括水平渐近线)。

  在反比例函数 y = k/ x (k>0)的图像中,

  在第一象限中 :

  ①当动点 P 沿着 x 轴无限远移时,即 x 趋于 ∞(无穷大时),y = k/ x 的极限值是 0 (无穷小),此时动点 P 到 X 轴的距离趋于 0 ,我们把 x 轴称为反比例函数图像的 水平渐近线 。

  ②当动点 P 沿着 x 轴无限接近 y 轴时,即 x 趋于 0 (无穷小), y = k/ x 的极限值是 ∞ (无穷大),此时动点 P 到 y 轴的距离趋于 0 ,我们把 y 轴称为反比例函数图像的 垂直渐近线 。

  其它象限同理。

反比例函数图像跟坐标轴无限接近的是怎么回事?

  如上图中 y = ±x 是 双曲线 C 的斜渐近线 。

  在反比例函数 y = k/x ( k ≠ 0 )的图像中:

  当 x 趋于无穷小时, y 趋于无穷大;当 x 趋于无穷大时,y 趋于无穷小 ,此时的图像才跟坐标轴无限接近。

  注:无穷大包括正、负无穷大。

  经过以上分析,我想这下你们应该明白,反比例函数图像和坐标轴无限接近是在什么样的情况下了吧。都是一种极限的情况,需要x趋于无穷,这样y也会趋于无穷,可是去穷是多少呢?有尽头吗?我想这样研究意义并不大。

*本文内容来源于网络,由秦学教育整理编辑发布,如有侵权请联系客服删除!
文章标签:
上一篇:为什么反比例函数图像不与坐标轴相交而是无限接近呢? 下一篇:一叶知秋,有哪些赞美秋天落叶、树叶的诗词句?
预约领取试听课
我们为您准备了
  • 学业水平系统测评
  • 个性化针对教学计划
  • 线下逆袭试听课
  • 系列学科学习资料
确认预约
热门活动
补习学校
补习学校
考前冲刺
考前冲刺
艺考冲刺  不一样的艺考培训
艺考冲刺 不一样的艺考培训
个性化一对一  小班课辅导
个性化一对一 小班课辅导
  • 热门课程
  • 热门资讯
  • 热门资料
  • 热门福利
亲爱的家长(学生)您好:
恭喜您,您已经预约成功!
同时你将获得一次学习测评机会
+年级学科资料